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ON RECURSIVELYDEFINED GECMWPRICAL OBJEZTS AND PATTERNS OF GRW!Ei

R. G. Schrendt and So M. Ulem

ABSTRACT

Illustrationsare given of computer-generatedpatterns exhibitedby

figures “growing”according to certe.inrecursive rules. Examples of grow-

ing patterns in two-and thre&.dimensionalspace are given. Patterns are

discussed in an infinite strip of a given width where periodic growth is

observed. When modificationof the rules of growth allows portions of the

pattern to die out, configurationssplit into separate connected pieces,

exhibitingthe @enomena of both motion and some iself-reproduction. A

simple conflict rule together with this modificationallows a game of

survival between two systems growing in a finite portion of the plane●

‘Xhe examples show both the complexityend richness of forms obtained from

startingwith a simple geometrical element and the application of a simple

recursive rule.

,

.

In this report we discuss briefly some empiri-

cal results obtained by experimentson cciaputing

machines. We continue the work describe& in a pa-

per “On Some Mathematicalproblems ConnectedWith

Patterns of Growth.
,,1

Rules of Growth.

Growth is in the plane subdivided into regular

squares. !l!hestarting configurationmay be any

arbitrary set of (closed) squares. The growth pro-

ceeds by generations in discrete intervals of time.

Only the squares of the lest generation are “alive”

and able to give rise to new squares. Given the
ntb

generation,we define the (n+l)ti as follows:

A square of tie next generation is formed if

a) it 1s contiguousto one end only one square

of the current generation,snd

b) It touties no other previously occupied

square except if the square should be Its

“grandparent.” In addition:

c) of this set of prospective squares of the

(n+l)t igenerationsatisfyingthe previous

condition,we eliminate all squares that

would touch each other. However, squares

that have the same ~ent are allowed to

touch.

In three dimensions the growth rules are the

same. One merely replaces tie squares by cubes and

observes e.11three provisions.

We show an example of such a pattern growing

on the infinite plane and then discuss patterns of

growth in an infinite strip of a given width where

a pericdic growth is observed. We discuss, beyond

the work mentioned in Ref. 1, the behavior of fig-

ures growing according to our rules, with a new

proviso: every element of tbe figure which is

older than a specifled number of generations, say

two or three, “dies;“ i.e., is erased. This makes

the figure move in the plane. We show some cases

of such motion, with occasional splitting of the
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figureo into se~ate connected pieces. In some

cases these figures are similar to the original

ones, thus exhibiting@encmena of both motion end

of self-reproduction. As another amusementwe tried

on the computers the following game: starting,

still in the plane with two se-ate initial ele-

ments, we let each grow according to our rule (in-

cluding erasure or death of the “old” pieces), then

when the two ~tterns approach each other we still

aPPIY tie rule of a further growth of each figure

with the proviso that the would-be grown new pieces

are not put in if they should try to occupy the same

square. l%is gives rise to a game for survive-l.or a

llfi~tlt be~een two such systems--ins~e C8Ses bofi

figures die out.

Finally, we give an example of a similar proc-

ess of growth in three dimensional space (subdivided

into regular cubes) with our rules for recursive ed-

dition of new elements.

Two-DimensionalPatterns.

We present 8s examples of the planar type of

Wttern Figs. la end lb. Our start was a single

square. me ~tterns are plotted merely in one qued-

ramt of tie plane and show the result of 100 end 120

generations of growth, respectively. Fig. lb shows

the ~ttern on a large square with 100 units on a

side; the portion of growth that extemls beyond 100

units horizontally or v=ticelly is not plotted.

The figures are synmetric about the diagonal of tie

square, and the density of the occupied squares is

about 0.44. There Is no apparent periodicity in

portions of this p4Xxa’n. As shown in Ref. 1, the

“stems” grow indefinitelyon the sides of the quad-

rant, ad the side branches split off frm the stem.

It is not known whether some of these side branches

will grow to infinite length or whether they will

all in turn be choked off by other aide brsnches

growing from the stem at later times.

In Fig. 2 we show a pattern grown from an lnl-

tial configurationconsisting of three noncontiguous

squares at the vertices of nn approximatelyaquil.at-

eral triangle. One till note that the ~tterns in

the subquadrantsare identical to those of Figs. la

and lb. The borders or strips between the subquad-

rants are due to interferencebetween ~tterns gen-

erated by the individual starting squares. One of

the strips reduces to a stem, since two of the

starting squares generate ~ttarns aynmetric with

respect to a 45° line through the center of the

triangle.

By restricting in advance the growth of a pat-

tern to en infinite strip of finite width in the

plene, one observes a periodic grow&. The proof

that in a finite strip the ~ttern must be periodic

is easily obtained. On Inspeotl.onOf our growM

procedure one observes that the last generation is

confined to a ~ of the strip which extends

through its width and an equal distance in length

back of the most forward square. There is only a

finite number of possible patterns in such a square.

Therefore, a configurationnsmt repeat itself end

from then on the whole process starts again. lHgure

3 shows different patterns generated in strips of

widths from 8 to 15 through MO generation of

growth. In each case the start Is a single squre

in the upper left-hand corner of the strip. Table

1 gives the observed lengths of the periods for

strips of widths 1 to 17. There seas to be no

simple relation between the width of the strip and

tie lenglh of the period.

Rules for Termination or “Death” in the Pattern.

We have experimentedwith a rule for erasing;

i.e., eliminationof a ~t of the ~ttern after it

Is a fixed number of generations old. For this we

have adopted a simpler rule of growth of the pat-

tern by assumfng only condition a). Each square

that is a cert.alnfixed number k of generations old

Is erased or “dies” and beccmes unoccupied. Later

on, the ~ttern may grow back into these unoccupied

positions. We took for k either the values 1, 2,

or 3. For example, given a ~ttern, we grow the

squares of the (nI-l)*generation from those of the

nti, and then erase those of the (n-l)*. Under

this rule the ~ttern will move end it may split up

into disconnectedpieces, as shown in Fig. 4a. It

turns out t&at certain X8 of the p3ttern repll-

cate themselves in shape end these repeat as sub-

patterns. One such subpattern consists of a

straight strip of squares with two additional

squares on each end. We call this rather frequent

re~cation subx=tterna “do6 Mine.” (See FM. 4b.)

,
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Another construction concerns the behavior of

such patterns in a finite ~rtion of the plane. We

have adopted a large square as the s~ce for growth.

Its boundary acted as en absorber so that each

square which would possibly grow from a square on

the boundary was not considered. This was studied

under tie simplified rule of growth mentioned above.

Starting with an initial configuration,say a single

small square, the pattern will grow and either even-

tually “die,” or else will become periodic In time

end continue indefinitely. In most cases the pat-

tern eventuallydisappears or dies. This is be-

cause the death rule eliminatesthe old squares,

and the simple conflict rule together with the

boundary condition prevent any new squares from

forming. For these problems we kept only the cur-

rent generation, so k = 1. By this we mean that

given a configuration,we produce the next one and

then immediately erase the starting one. We have

run a number of cases on a computer to ascertain

either the period end its length, or the number of

generations before the ~ttern termlnatee. This we

have done in various sizes of the large square in

which the game takes place. A samplingwas obtainrki

for sizes of the large square for 2X2 up to 8x8.

As an example, consider the square of size 6x6.

There are, of course, 2
36

~ssible initial conf@u-

rati.ons. Out of these we have chosen 132 such con-

figurations at random, asauming that each of the 36

squares has 1/2 chance of being occupied initially.

Each of these different starting configurations

grew until it became periodic or died out. Let s

be the number of states in each sequence and t the

length of a period. The values of s ranged from 11

to 109 with en average of 33. The values of t were

1, k, 6, 8, ~, end 2k. Here t . 1 meana the pet-

tern died out. In our sample, 87 of the 132 casea

had t = 1. The longest sequencehad s = 109, with

t= 24. In enother experimentwe tried 15 random

starting configurationschosen in an 8x8 large

square. The values of s ranged from 49 to 397,

with t values of 1, 8, 12, and 16. Ten of our 15

experimentshed t . 1.

We can formulate condition a) of tbe rules of

growth in another way if we keep only one generation

before death. In this case the status of eDY square

in the (n+l)th generation is determined only by the

th
state of Lts four neighboring squares in the n

generation. Let us assign a 1 to an occupied square

and a O to an empty one. We use the two operators

(“) and (+), wlththe (+) modulo 2--that 1s, 1+1=0.

If an,bn,cn,dn are the four neighbors of a

square Xn end all four symbols have values 1 or O,

that is, they represent the states of the squares in

the n
th

generation, then the state of the square x

in the next generation is simply

Z*X
‘n+l= n n “ (an+bn) +=n“En ● (cn+dn)

where the bars above the symbols represent the com-

plement (also modulo 2)0

If the whole region in which the game is

P@f~ iS bounded, say, again by a large squexe, we

will assume that the values on the boundary are al-

ways O. The state of tie configurationat time

(n+l) is then obtainableby a fixed transformation

from the state at time (n).

One of the interestingproperties to determine

is the existence of states which are self-replicating;

that is, they reproduce themselves immediately.These

are the fixed points of the transformationdefined

above. It ia easily verified that there are none

such (except those identical.lyO, which meens the

pattern dies out) for squares of size 2x2 and 3x3.

There exists just one such state for the kxk square.

This is givenby

0110

1oo1

1001

O11o .

For the 5x5 square there are these two:

10101 11011

10101 00000

00000 end 11011

10101 00000

10101 11011
●

There are none of the 6X6 case. Here is en example

of one for the 17X17 case. Let A be the second of

the two 5x5 matrices. Let IVcand Nr be 5x1 and Ix5

mstrlces, respectively,with zero elements. Then

the matrix
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A Nc

N= O

A N=

Nr O

A N=

A N= A

Nr O Nr

ANA c

N O Nrr

A N= A

is 8elf-replicating.

Conte8ts or Fights between Two Configuratlona.

We may otert, on a large finite square, with

two different initial configuration each labeled,

say, by a different color, so as to distinguish one

set from the other. We let each grow according to

condition a) of the rules of growth, plus the death

rule. Now condition a) states that a square of’the

next generation 1s not formed if it is contiguous

to two or more 8quares of the current generation.

Two such squares of the current generation meybe

members of the same configurationor else one from

each of the two different configurations. So the

growth of these pztterns is subject to restrictions

for elements of the new generationwithin themselves

separately, and when they are almost in contact, to

the two taken together. One or both of these sys-

tems may then go to zero or one may survive, for

some time or indefinitely.

figures 5a, ~, 5c, ~ illustrate one case of

such a fight between two starting patterns in a

23x23 square. They show the situation at genera-

tions 16, s, 32, and 33, respectively. We kept

two generationsbefore erasure for both patterns.

We assumed 88 initial.conditiontifor pattern A one

square in the ertreme lower left-hand corner and for

pattern B one square placed one unit of distauce off

from the upper right-hand corner. After 33 genera-
th

tions (Fig. ~) pattern B won, at which time the n

generation squares of pattern A were completely

eramd. (The n-lti generation squares ofAwill

disappear the next generation.)

In another game ve have started with two single

squares in the same relative pxxltions from the cor-

ners. For pattern A we kept one generationbefore

erasure, and for pattern B two generations. In this

case A won in 112 generations on the 23x23 board.

There is no figure for this contest.

Three-DimensionalModel.

We again u8ed all three conditions of the rules

of growth in forming a three-dimensionalpattern.

Ngures 6a end 6b chow two viewfJof a model of such

a ~ttern. Two-dimensionalplots of the pattern

were obtained from the computer after 30 genera-

tions of growth. lhe mndelwae constructed from

these plots end then ~otogra~ed. The starting

configurationwas the single cube on the extreme

left of Fig. 6a. ~s nmdel represents the pert

grown In one octant of the space. In each octemt

there 18 a further threefold synsnetryalong the co-

ordinate axes, of which we took the -t x > y,

x> z. There still remains a plane of synznetryat

45° to the x axis. The dark cube8 represent the

30ti generation elements.

Our examples chow both the ccsnplexityend the

richness of forms obtained fran starting with a

simple geometrical element end the application of

a simple recursive rule. The amount of “informa-

tion” COntdned in these objects i8 therefore quite

small, despite their apparent complexity and unpre-

dictability.

If one wanted to define a Proce8s of grm

which is continuous rather than by discrete steps,

the formulationwould have to involve functional

eq-tlons concerning partial derivative.

It appear8 to us that a general 8tudy of the

geometry of object8 defined byrecur8ionII and itera-

tive procedures deserves a general.study--they pro-

duce a variety Of sets different frcm those defined

by explicit algebraic or analytical expressions or

by the u8ual differential equation8.

ACKNWIEDGMENTS

The three-dimensionalmcdel wae constructed by

Barbara C. Powell and ~otogra~ad byW. H. Regan.

REFERENCE

1. S. Ulem In Proceedings of Symposia In Applied
Mathematics Vol. XIV, American Mathematical
Society 1A, p. 2.15to 2A; see also Hol.1.aday,
J. C., and Ulam, S., Notice8 of the American
Mathemtical Soc. 7 (1960), p. 234; end Schrendt,
R. (1.,and Ulam, S., Notices of the Americau
MathematicalSociety7 (lg60), 642.

.

0

6



TABLE 1

Width of stri~ Period of Patte~

1

2

3

4

5

6

7

8

9

10

I-I

12

13

14

15

16

17

1

2

3

5

5

8

13

13

13

26

13

91

13

1(%

106

75

93
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Fig. la. Growth from a single starting square atter lCO generations.
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Fig. lb. Seineas Fig. la but after 120 generations.
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Fig. 2. Growth from three noncontiguousstarting squares.



Fig. 3. Patterns generated in an infinite strip of
widths 8 to 15, after 100 generations.
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Fig. ka. Growth from a single start-lugsquare with death rule, keeping

two generations. The nti generation squares are cross hatched,

the (n-l)fiare blank. The integers at the top are the number
th

of squares in the n and (n-l)th generation, and the genera-
tion number.
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Fig. kb. Same as Fig. ha but after 45 generations.
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Fig. 5a. Fight between two different patterns after 16 generations, keeping

two generationsbefore erasure. There are 26 (n-1)
th generation

th
squares of the lower pattern, and k n generation squares. The

upper ~ttern has 32 (n-l)*
th

generation squares, and 12 n genera-
tion squares.
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Fig. 5b. Same as Fig. 5a but after 25 generations.
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Fig. 5c. Same as Fig. 5a but after 32 generations.
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Fig. 6a. Model of three-dimensiooa.l~ttern after 30 generationsof grcwth.
The startingconfigurationis the single cube on the extreme right.
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Fig. 6b. Another view of the three-dimensiond model showing the dark cubes

M* are the elementsof the 30ti generation.
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